## Examples of 45°-45°-90° (Find the missing lengths)











Find the unknown side lengths in each right triangle.

5.



6



## **Explain 2** Trigonometric Ratios of Special Right Triangles

You can use the relationships you found in special right triangles to find trigonometric ratios for the angles  $45^{\circ}$ ,  $30^{\circ}$ , and  $60^{\circ}$ .

**Example 2** For each triangle, find the unknown side lengths and trigonometric ratios for the angles.



Step 1

A 45° $-45^{\circ}-90^{\circ}$  triangle with a leg length of 1

Since the lengths of the sides opposite the 45° angles are congruent, they are both 1. The length of the hypotenuse is  $\sqrt{2}$  times as long as each leg, so it is  $1(\sqrt{2})$ , or  $\sqrt{2}$ .



Step 2

Use the triangle to find the trigonometric ratios for 45°. Write each ratio as a simplified fraction.

| Analo | Sino — opp           | Cosino — adj               | Tangent — opp |
|-------|----------------------|----------------------------|---------------|
| Angle | hyp                  | $Cosine = \frac{asy}{hyp}$ | Tangent =adj  |
| 45°   | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$       | 1             |



## **Evaluate: Homework and Practice**



For each triangle, state whether the side lengths shown are possible. Explain why or why not.



- Online Homework
- Hints and Help
- Extra Practice

1.



2.





3.





Find the unknown side lengths in each right triangle.





- Right triangle UVW has acute angles U measuring 30° and W measuring 60°.
  Hypotenuse UW measures 12. (You may want to draw the triangle in your answer.)
- **8.** Right triangle PQR has acute angles P and Q measuring 45°. Leg  $\overline{PR}$  measures  $5\sqrt{10}$ . (You may want to draw the triangle in your answer.)

Use trigonometric ratios to solve each right triangle.

9.





**11.** Right  $\triangle KLM$  with  $m \angle J = 45^{\circ}$ ,  $\log JK = 4\sqrt{3}$ 



**12.** Right  $\triangle PQR$  with  $m\angle Q = 30^{\circ}$ , leg QR = 15

